Discrete-Time Lyapunov Design for Neuroadaptive Control of Elastic-Joint Robots
نویسندگان
چکیده
A neural-network controller operating in discrete time is shown to result in stable trajectory tracking for rigid and elastic-joint robots. The technique assumes continuous-time state feedback. The proof of stability uses discrete-time Lyapunov functions. For the elastic-joint case, a discrete-time version of the adaptive backstepping technique is used. The result is that the neural network can be run at a very slow control rate, suitable for online calculations. The neural network used is referred to as the CMAC-RBF Associative Memory (CRAM), a modification of Albus's Cerebellar Model Arithmetic Computer (CMAC) algorithm using radial basis functions (RBFs). Simulation results are provided for a two-link planar elastic-joint robot and show that performance can be improved by using a larger network at a slower control rate.
منابع مشابه
Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations
This paper is concerned with the problem of design and implementation a robust adaptive control strategy for flexible joint electrically driven robots (FJEDR), while considering to the constraints on the actuator voltage input. The control design procedure is based on function approximation technique, to avoid saturation besides being robust against both structured and unstructured uncertaintie...
متن کاملFunction Approximation Approach for Robust Adaptive Control of Flexible joint Robots
This paper is concerned with the problem of designing a robust adaptive controller for flexible joint robots (FJR). Under the assumption of weak joint elasticity, FJR is firstly modeled and converted into singular perturbation form. The control law consists of a FAT-based adaptive control strategy and a simple correction term. The first term of the controller is used to stability of the slow dy...
متن کاملInteger-order Versus Fractional-order Adaptive Fuzzy Control of Electrically Driven Robots with Elastic Joints
Real-time robust adaptive fuzzy fractional-order control of electrically driven flexible-joint robots has been addressed in this paper. Two important practical situations have been considered: the fact that robot actuators have limited voltage, and the fact that current signals are contaminated with noise. Through of a novel voltage-based fractional order control for an integer-order dynamical ...
متن کاملNonlinear Stabilizing Controller for a Special Class of Single Link Flexible Joint Robots
Joint flexibility is a very important factor to consider in the controller design for robot manipulators if high performance is expected. Most of the research works on control of flexible-joint robots in literature have ignored the actuator dynamics to avoid complexity in controller design. The problem of designing nonlinear controller for a class of single-link flexible-joint robot manipulator...
متن کاملRobust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Robotics Res.
دوره 19 شماره
صفحات -
تاریخ انتشار 2000